Acoustic Phonetics & Language Revitalization in the Hul'q'umi'num' Community

Sky Onosson (U. Winnipeg, U. Manitoba) and Sonya Bird (U. Victoria)

Project Team and Support

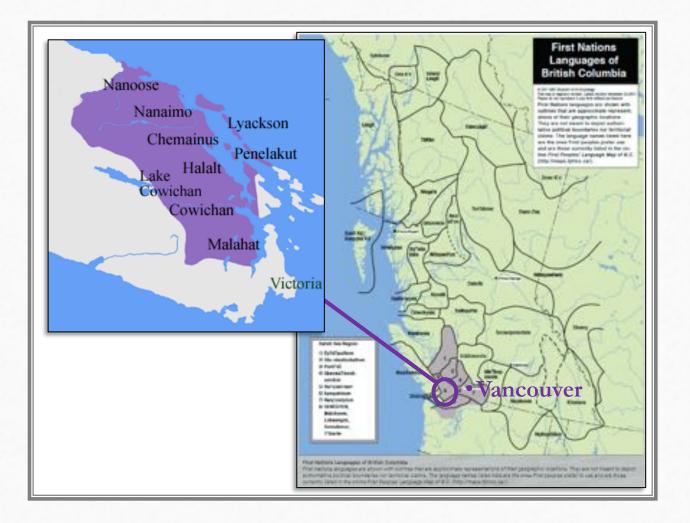
- Hul'q'umi'num' Elders: Ruby Peter, Delores Louie, Merle Seymour
- SFU Masters in Linguistics of a First Nations Language (Hul'q'umi'num')
- Dr. Donna Gerdts, Simon Fraser University
- Dr. Sonya Bird, University of Victoria
- SSHRC, including Partnership Development Grant #890-2017-0026

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

University of Victoria

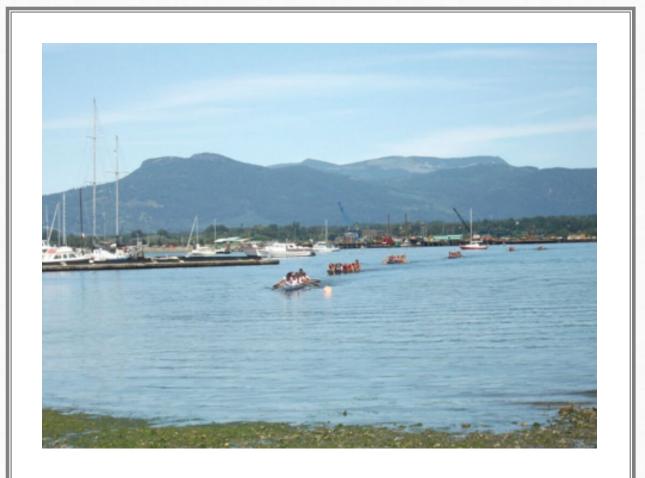
Overview

Production differences observed in vowelglide sequences between Hul'q'umi'num' L1 and L2 speakers


Acoustic phonetic analysis reveals particular differences related to duration, formant trajectories, and acoustic intensity

Findings attributable to a variety of potential factors

Results offered to Hul'q'umi'num' community for use in ongoing language revitalization project


The Hul'q'umi'num' Language

- Hul'q'umi'num' territory extends along the western Salish Sea, on southeastern Vancouver Island and neighbouring islands
- Hul'q'umi'num' =
 "Island Halkomelem"

The Hul'q'umi'num' Language

• Salishan language, Central Salish branch

- Four other branches: Tsamosan, Interior Salish, Bella Coola, Tillamook
- Central & Tsamosan speakers often identified as "Coast Salish"
- Approximately 40 remaining first language speakers
- Over 200 fluent second language speakers and over 1,000 learners of all ages
- Many learners currently at intermediate levels of proficiency and ready to tackle the more complex aspects of the language, including pronunciation details

The Hul'q'umi'num' Revitalization Project

- Strong interest but limited resources in teaching & learning 'authentic' pronunciation
- Popular pedagogical approaches don't emphasize pronunciation
- Descriptions of pronunciation rare & often inaccessible
- Few opportunities for learners to interact with fluent speakers

The Hul'q'umi'num' Revitalization Project

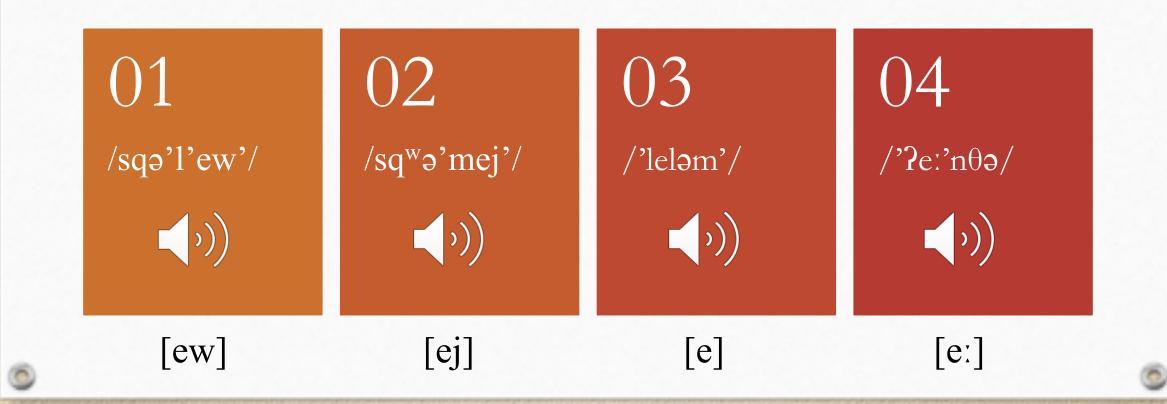
- Project goals:
 - 1. Document pronunciation features of L1 and L2 speakers
 - 2. Work with elders, teachers, learners to identify perceived challenges for learners
 - 3. Find ways to best overcome these challenges
- This study is part of the first project goal, documenting pronunciation differences

Research Questions

- 1. What kinds of differences exist between Hul'q'umi'num' L1 and L2 pronunciations of vowel-glide sequences?
- 2. From a technical standpoint, how best to document such differences?
- 3. How can such documentation contribute to pedagogy?

Participants & Recording Procedure

- 1 female L1 speaker, 15 female L2 speakers
- Ages: 20s to 60+
- Recordings made as part of a "pronunciation test" exercise (April 2018) with Hul'qumi'num' Language Academy students (SFU-based)
- Repetition task: elder and learners repeated each word twice in sequence
- Recordings made with: Audacity, Yeti USB microphone in cardioid mode, Apple iMac, saved as 48 kHz, 16-bit uncompressed .wav



Vowel/ Sequence	Word	
[ew]	/sqə'l'ew'/	beaver
[ej]	/sq ^w ə'mej'/	dog
[e]	/'leləm'/	house
[eː]	/'?eː'nθə/	me

Materials

- Single words selected for each desired vowel/sequence
 - Ideal phonetic environments not always available
- Monophthongal /e, eː/ included for comparison
- Apostrophes indicate glottalization
 - Plain glides unavailable
- N=240 tokens analyzed

Sample Tokens

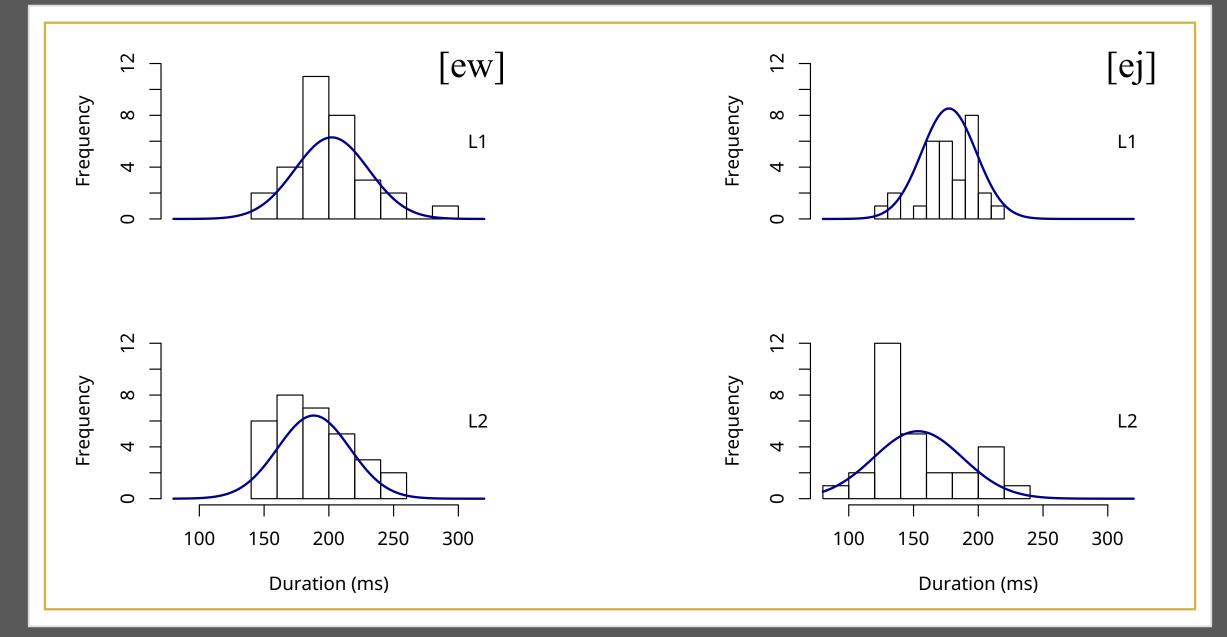
Acoustic Analysis

Praat: token segmentation

• Praat script (Xu 2015) used to extract duration, and formant & intensity data at 5% intervals

R: statistical testing & modeling

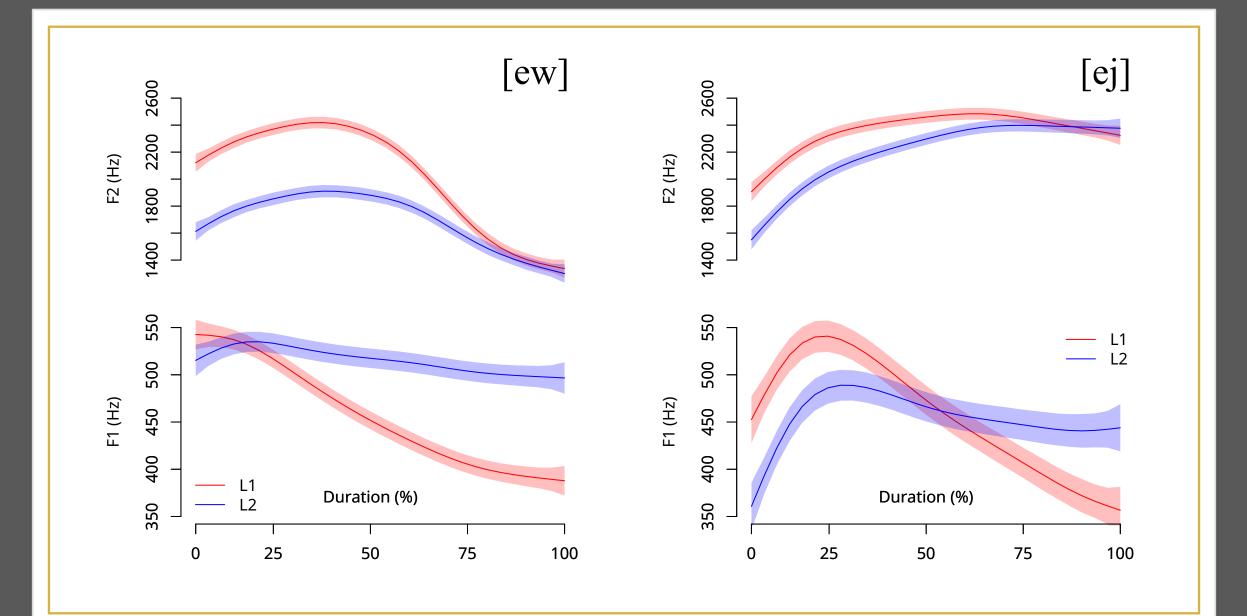
• Generalized Additive Models (GAMs) used for statistical comparisons of dynamic non-linear patterns e.g. formant trajectories over time


Results: Overview

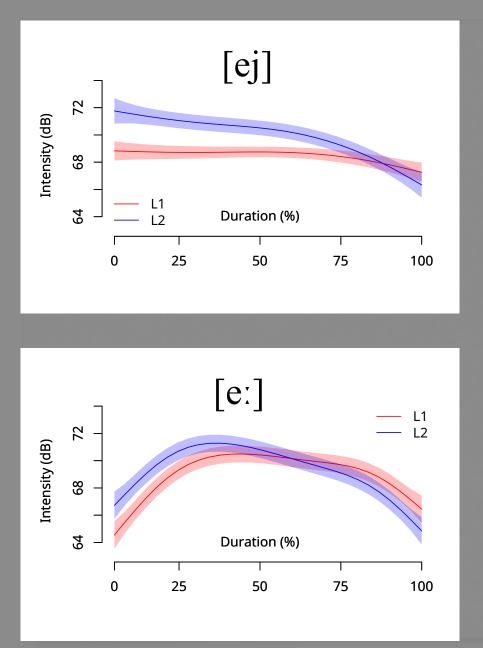
- Primary focus = vowel-glide sequences
- Three areas of comparison:
 - 1. Duration
 - 2. Formant trajectories
 - 3. Intensity contours

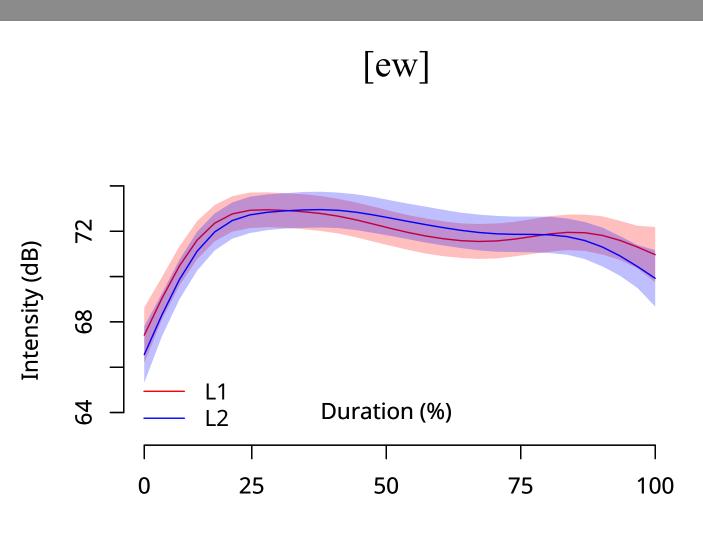
Vowel	L1 Duration (s.d.)	L2 Duration
[ew]	202.2 (28.5) ms	188.3 (28) ms
[ej]	177.3 (21) ms	153.5 (34.5) ms
[e]	160.8 (15.3) ms	163.2 (39.1) ms
[eː]	202.9 (28.4) ms	197.9 (45.4) ms

Duration


- L2 learners produce less extreme durations
- [ej, ew, eː] are shorter
- [e] is (slightly) longer

Formant Trajectories


- Focusing on V-G sequences, formant trajectory comparisons show clear differences between L1 & L2 speakers
- Differences occur throughout the formant trajectories in various ways
- Overall, targets in V-G sequences are closer together for L2 vs. L1 speakers, especially with respect to height (F1)
- L2 speakers show shallower transitions between vowel and glide targets



Intensity Contours

- General trend for intensity to drop off sooner for L2 speakers
- Both [ew] and [e:] exhibit two intensity peaks for L1, one prior to 50% duration and one after 75%, suggestive of two distinct components
- [ej] does not exhibit an obvious "two-peak" pattern

Summary

- **Duration**: L2 relative vowel-to-vowel durations similar to L1, but mean per-vowel durations briefer than L1, most substantially for [ej]
- Formant trajectories: L2 V-G sequences less transitional than L1—more retracted during nucleus (F2) and raise less during the glide (F1)
- Acoustic intensity: L2 match L1 production fairly well, but intensity drop-off tends to be steeper and occur slightly earlier
- Overall: L2 V-G sequences tend to be shorter, less transitional, and with earlier drop-offs in intensity—in short, learner's productions are more reduced

Discussion

- The general pattern is suggestive of several potential explanations:
- 1. Expected generational/age speech differences
- 2. L1 instructors hyper-articulating in a teaching-learning context
- 3. L2 learners hypo-articulating under influence of English
 - Most of the community are English L1 speakers
- 4. Language contact (English–Hul'q'umi'num') effects in younger bilinguals

Community Feedback

- A version of this talk was presented to Dr. Donna Gerdts (SFU) and the Hul'q'umi'num' Language and Culture Collective
- The Hul'q'umi'num' speakers, including one L1 elder, indicated results matched their perceptions of production differences between L1 & L2
- They indicated interest and support in having these results promoted via academic conferences to raise awareness of Hul'q'umi'num' language, including use of (anonymized) audio recordings

Future Work

- Develop improved methodology, including the use of more well-matched tokens and non-glottalized segments
- Comparison of bilingual pronunciations in both Hul'q'umi'num' & English
- More direction from elders/teachers in other specific areas of phonetic difference between L1 & L2 speakers worth examining
- Community interest in larger-scale project to document phonetic characteristics of the full sound system of Hul'q'umi'num'

Thank you!

- Audacity Team. 2018. Audacity(R): Free Audio Editor and Recorder (Version 2.3.0). <u>https://www.audacityteam.org/</u>
- Bird, S., Miyashita, M. In press. Teaching phonetics in the context of language revitalization. *Proceedings of the 2nd International Symposium on Applied Phonetics.*
- Boersma, P., Weenink, D. 2018. *Praat: doing phonetics by computer (Version 6.0.43)*. <u>http://www.praat.org/</u>
- Hastie, T., Tibshirani, R. 1987. Generalized Additive Models: Some Applications. *Journal of the American Statistical Association*, 82(398), 371–386.

- Hastie, T.J., Tibshirani, R.J. 1990. *Generalized Additive Models*. New York: Chapman and Hall.
- R Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. <u>http://www.R-project.org/</u>
- van Rij, J., Wieling, M., Baayen, R., van Rijn, H. 2016. *itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs (Version 2.2).*
- Xu, Y. 2015. FormantPro.praat (Version 1.4). <u>http://www.phon.ucl.ac.uk/home/yi/FormantPro/</u>