The effects of language contact on non-native diphthongs in lexical borrowings: The case of Media Lengua

Sky Onosson ${ }^{1}$ \& Jesse Stewart ${ }^{2}$
sky@onosson.com stewart.jesse@usask.ca
University of Manitoba ${ }^{1}$ University of Saskatchewan ${ }^{2}$

Society for Pidgin and Creole Languages
New Orleans
January ${ }^{\text {rd }}$, 2020

Media Lengua

Mixed Language (Quichua-Spanish)
Quichua - phonological, morphological, and syntactic syster
Spanish - Lexicon

Si no aceiti-ta ocupa-kpi-ka huevo-ka sarten-pi-mi pega-shpa queda-n. If not oil-ACC use-DS.COND-TOP egg-TOP pan-LOC-VAL stick-SS remain-3.PRES 'If you don't use oil, the eggs will stick to the pan.'

Mixed language Vowel Systems

Gurindji

/u:/ \&
/o:/
Show more overlap in Gurindji Kriol than in Kriol

Michif
(Rosen, Stewart, \& Sammons 2020)
$/ \varepsilon / \& / 0 / \quad$ Merged French and Cree vowels into a Cree-like arrangement with the exception of French origin $/ \varepsilon$, $\boldsymbol{o} /$

Media
ISteryata
${ }^{29145}$ \& /i/
Considerable overlap in Quichua/ Spanish high /o/ \& $/ \mathrm{i} / \mathrm{u} / \mathrm{u} / \mathrm{\&}$ vowels with Spanish mid vowels. Substantial overlap in Spanish and Quichua high and low vowels

Media Lenguá's Xowel System

Production

sarten-pimi
pan-LOC-VAL
'in the pan'
(Stewart, 2014)

Media Lenguá's Xowel System

Production

Quichua

Media Lengua's Xowel System

Perception

2 AFC
 Identification
 Task Experiment

Media Lengua's Xowel System

Conclusions

Media Lengua's vowel system is highly overlapping yet vowels are perceptually distinct.

Media Lenguag's Xowel System

Research question

How do diphthongs in Spanish origin words adapt to Media
Lengua's overlapping vowel space?

Media Lengua's Xowel System

		Diphthong	Media Lengua	Quichua	Spanish
		ae	25	--	26
		ai	27	68	30
Media Lengua:	23 (14F/ 9M)	ao	9	0	17
Quichua:	10 (6F/ 4M)	au	24	17	31
Spanish:	14 (8F/ 6M)	ea ei	15	--	23
Total:	47 (28F/ 19M)	eo	11	--	26
		eu	13	--	25
2010-2019		ia	32	20	44
		ie	85	21	73
Wordlists		io	34	--	55
Elicitations		oa	5	--	14
Spontaneous speech		ua	29	11	23
		ue	78	12	58
		ui	13	17	20
		uo	6	--	11
		Total: 1117	426	116	525

Acoustic Measurement

- Tokens of diphthongcontaining words isolated in Praat and manually segmented
- FormantPro script (Xu \& Gao, 2018) used to extract formant measurements for F1, F2, F3 at 5\% intervals across vowel duration

Acoustic Analysis

20 timepoints (5\% intervals)

GAMMs comparisons

- Generalized Additive Mixed Models (GAMMs; Hastie \& Tibshirani, 1990; Wood, 2017; Sóskuthy, 2017) for comparison of non-linear data:
- E.g. comparisons of formant trajectories across different conditions:
- Vowel A vs. vowel B
- Vowel A before segment X and segment Y
- Vowel A by L1 vs. L2 speakers (Onosson \& Bird, 2019)
- Applied within our dataset to compare:
- Production of the same diphthong across Media Lengua, Quichua, and Spanish
- Production of Quichua- and Spanish-derived diphthongs within Media Lengua

Quichua vowel space
Ellipses indicate 2 standard deviations; monophthong $n=634$

Spanish vowel space
Ellipses indicate 2 standard deviations; monophthong $n=1929$

Media Lengua vowel space
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=2040$

Cross-Language Riphthong Comparisons

- Per-diphthong, per-formant GAMMs comparisons:
- Dependent variable: -F1 or F2
- Main independent/fixed effect: - Language (M.L. vs. Quichua vs. Spanish)
- 2 random effects: -Speaker (by Duration)
- Word (by Duration)

Cross-Language Riphthong Comparisons

	ae	ai	ao	au	ea	ei	eo	eu
F1	n.s.	n.s.	n.s.	$\boldsymbol{p}=\mathbf{0 . 0 2}$	n.s.	$\boldsymbol{p = 0 . 0 1 1}$	n.s.	$\boldsymbol{p = 0 . 0 0 5}$
F2	n.s.	n.s.	n.s.	n.s.	n.s.	$\boldsymbol{p} \simeq \mathbf{0}$	n.s.	$\boldsymbol{p}=\mathbf{0 . 0 0 6}$
Langs	$M L, S$	$M L, Q, S$	$M L, S$	$M L, Q, S$	$M L, S$	$M L, S$	$M L, Q, S$	$M L, S$
F1	$\boldsymbol{p} \simeq \mathbf{0}$	n.s.	$\boldsymbol{p} \simeq \mathbf{0}$	n.s.	n.s.	n.s.	n.s.	$\boldsymbol{p}=\mathbf{0 . 0 0 2}$
F2	$\boldsymbol{p \simeq 0}$	$\boldsymbol{p \simeq 0}$	$\boldsymbol{p = 0 . 0 2 3}$	n.s.	n.s.	$\boldsymbol{p} \simeq \mathbf{0}$	n.s.	n.s.
Langs	$M L, Q, S$	$M L, Q, S$	$M L, S$	$M L, S$	$M L, Q, S$	$M L, Q, S$	$M L, Q, S$	$M L, S$

Cross-Language Rifferences in both F1 and F2

- Media Lengua vs. Spanish: /ei, eu, io/
- Media Lengua vs. Quichua vs. Spanish: /ia/

Media Lengua vowel space with /ei/ trajectory
Ellipses indicate 2 standard deviations; monophthong $n=2040$

Spanish vowel space with /ei/ trajectory
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=1929$

/ei/: F1 \& F2

/ei/ F2

- Significant differences across full trajectory
- Media Lengua: F2 much lower = retracted position

Media Lengua vowel space with /eu/ trajectory
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=2040$

/eul: F1 \& F2

/eu/ F1

- Small, localized difference in onset
- Media Lengua: higher F1 = lower articulation

Media Lengua Spanish

Difference Media Lengua - Spanish

- Sig. F2 differences across $>50 \%$ of trajectory

/eu/ F2

- Media Lengua: F2 higher (advanced position) and generally more dynamic
- Spanish: F2 very flat, little front-to-back movement

Quichua vowel space with /ia/ trajectory
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=634$

Media Lengua vowel space with fia/ trajectory Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=2040$

Spanish vowel space with /ia/ trajectory Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=1929$

/ia/: F1 \& F2

\square - Media Lengua vs. Quichua: no sig. difference
<ia/ F1

- Spanish: somewhat higher F1 = lower articulation, sig. difference at onset and offset

Difference Media Lengua - Quichua

Media Lengua vowel space with /io/ trajectory
Ellipses indicate 2 standard deviations; monophthong $n=2040$

Spanish vowel space with /io/ trajectory
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=1929$

/io/: F1 \& F2

Media Lengua

/ig/ F1

- Media Lengua: F1 lower (higher articulation) during final 25% of duration

- Spanish: slightly higher F2 = advanced articulation, from $20-40 \%$ duration and at offset

Cross-Language Rifferences in onlx F1 or F2

- F1:
- Media Lengua vs. Spanish: /uo/
- Media Lengua vs. Quichua vs. Spanish: /au/
- F2:
- Media Lengua vs. Quichua vs. Spanish: /ie, ue/

Quichua vowel space with /ie/ trajectory
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=634$

Spanish vowel space with fie/ trajectory
Ellipses indicate 2 standard deviaitions; monophhtong $\mathrm{n}=1929$

${ }_{1000}$ ${ }_{\text {F }}^{2000}(\mathrm{~Hz})$

- Media Lengua distinct from both Quichua \& Spanish; lower F2 (retracted) over initial 2/3 duration
- Quichua: F2 slightly higher = advanced position
- Spanish: F2 substantially higher with steeper trajectory

Quichua vowel space with /ue/ trajectory
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=634$

Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=2040$

Spanish vowel space with /ue/ trajectory Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=1929$
Ellipses indicate 2 standard deviations; mon

/ue/: F2

Difference Media Lengua - Quichua

- Media Lengua vs. Quichua: no sig. diff.

/ue/ F2

- Spanish: lower F2 = retracted position, during approx. 30-50\% of duration

Cross-Language Comparisons

- Spanish diphthongs generally show less internal variability:
- Confidence intervals typically much narrower than other languages
- Lower variation can't be attributed to either speaker n, which is notably higher than Quichua, nor token n which is the largest among all three languages
- Media Lengua vs. Quichua typically non-contrasting
- Single identified contrast between ML~Q is F2 of /ie/;

ML~Sp /ie/ F2 difference is even greater

- In general, Media Lengua production matches Quichua production

Media Lengua-Internal Riphthong Comparisons

- Pairs of Media Lengua diphthongs selected for cross-comparison
- /ai ~ ei/
/ea~ia/ /eo~eu/
/ue ~ ui/
- GAMMs model uses main fixed effect of Vowel instead of Language
- ANOVA comparison of GAMM null vs. non-null models identifies where formant trajectories differ significantly between diphthongs

	ai vs. ei	ea vs. ia	eo vs. eu	ue vs. ui
F1	$\boldsymbol{p} \simeq \mathbf{0}$	n.s.	$\boldsymbol{\rho} \simeq \mathbf{0}$	$\boldsymbol{p}=\mathbf{0 . 0 0 8}$
F2	$\boldsymbol{p} \simeq \mathbf{0}$	$\boldsymbol{p} \simeq \mathbf{0}$	$\boldsymbol{p} \simeq \mathbf{0}$	$\boldsymbol{p}=\mathbf{0 . 0 0 2}$

Media Lengua vowel space with /ea/ trajectory
Ellipses indicate 2 standard deviations; monophthong $n=2040$

Media Lengua vowel space with /ia/ trajectory
Ellipses indicate 2 standard deviations; monophthong $\mathrm{n}=2040$

Media Lengua /eą/ xş. /ią/

Media Lengua-Internal Riphthong Comparisons

- Most diphthong pairs differ significantly across both F1 \& F2
- /ea, ia/ do not differ in F1, leaving F2 (i.e. front-back position) as the sole differentiating factor for this pair
- Some pairs (e.g. /eo, eu/ and /ue, ui/) exhibit only subtle differences, and not always restricted to the expected portion of the trajectory

Media Lengua Comparisons by Source Language

- Three diphthongs are represented by Media Lengua lexical items of both Quichua and Spanish origin:
- /ai, au, ui/
- GAMMs comparison conducted for each diphthong using Media Lengua data with a fixed effect of Source Language
- None turned out to exhibit significant differences in formant trajectories
- In other words, different-source-language lexical items are incorporated into a single phonological vowel system (with regards to these particular diphthongs)
- This aligns with cross-linguistic comparison across diphthong inventory, where vast majority of ML \sim Q comparisons were non-distinctive

Riscussion: Why?

The Media Lengua vowel system reflects that of a late bilingual where interference from their L1 (Quichua) impedes native-like production in their L2 (Spanish).

- Then the vowel system could have been subsequently nativized with the overlaps 'frozen' in place.
- Phonological 'stresses' from relexification (e.g., high functional loads of contrastive nonnative phonemes) from the mid-vowels may have been driving forces for maintaining/ creating contrasts with the high-vowels in the predominately Quichua system.

1,415 ML Word Sample

Vowel	e	0	ea	ae	eo	eu	ue	oi	io	ei	ie	ao	oa	uo
Count	461	524	9	0	5	4	33	1	55	6	37	3	1	2
\%	33\%	37\%	0.6\%	0\%	0.4\%	0.3\%	2.3\%	0.07\%	4\%	0.4\%	2.6\%	0.2\%	0.1\%	0.1\%
Count	985		147											
\%	70\%		10\%											

Riscusssion: Riphthongs

Diphthongs also appear to follow this tendency given that the formant trajectories in Media Lengua look strikingly similar to Quichua diphthongs (e.g., size, shape, variability). However, given that the mid- and high-vowels have 'solidified' into highly overlapping acoustic spaces, more reminiscent of the 3-vowel Quichua system, Spanish origin diphthongs were forced to accommodate to these regions while maintaining contrastive. This might suggest why Media Lengua diphthongs may act more like what would be expected from Quichua, if such sounds existed, rather than Spanish.

Fyture research

Functional load

Vowel	e	o	i	u
Count	461	524	588	286
$\%$	33%	37%	42%	20%
Count	$\mathbf{9 8 5}$		$\mathbf{7 8 8}$	
$\%$	$\mathbf{7 0 \%}$		$\mathbf{6 2 \%}$	

Cognitive load reaction time/ eye-tracking experiment

piscadu
piscado

pescado pescadu

Future research

Vowel length

References

Boersma, P., \& Weenink, D. (2019). Praat: doing phonetics by computer. http://www.fon.hum.uva.nl/praat/
Flege J (2007): Language contact in bilingualism: phonetic system interactions; in Cole J, Hualde J (eds): Laborator Phonology 9. Berlin, Mouton de Gruyter, pp 353-380.
Hastie, T. J., \& Tibshirani, R. J. (1990). Generalized Additive Models. New York: Chapman and Hall.
Jones, C., Meakins, F., \& Buchan, H. (2011).
Comparing vowels in Gurindji Kriol and Katherine English: Citation speech data. Australian fournal of Linguistics, 31, 305-326.

Livijn P (2000): Acoustic distribution of vowels in differently sized inventories - hot spots or adaptive dispersion? PERILUS 23

Onosson, S., \& Bird, S. (2019). Differences in Vowel-Glide Production Between L1 and L2 Speakers of Hul'q'umi'num'. ICPhS19, pp. 1-5.
https://assta.org/proceedings/ICPhS2019/papers/ICPhS 1033.p df
Rosen, N., Stewart, J., \& Sammons, O. (accepted). A comparative analysis of Michif, Métis French, and Cree vowel spaces. Journal of the Acoustical Society of America.

R Core Team. (2019). R: A language and environment for statistical computing: https://www.r-project.org/
RStudio Team. (2019). RStudio: Integrated Development for R. https://www.rstudio.com/
Sóskuthy, M. (2017). Generalised Additive Mixed Models For Dynamic Analysis In Linguistics: A Practical Introduction. https://github.com/soskuthy/gamm intro
Stewart, J. (2014). A comparative analysis of Media Lengua and Quichua vowel production. Phonetica, 7, 159-182. https://doi.org/10.1159/000369629
Stewart, J. (2018). Vowel perception by native Media Lengua, Quichua, and Spanish speakers. Journal of Phonetics, 71, 177193. https://doi.org/10.1016/j.wocn.2018.08.005

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wood, S. N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC.
Xu, Y., \& Gao, H. (2018). FormantPro as a Tool for Speech Analysis and Segmentation. Revista De Estudos Da Linguagem, 26(4), 1435-1454. https://doi.org/10.17851/2237-2083.26.4.14351454

